Contrastive Learning

Contents

- 1. Limitations in supervised learning
- 2. Towards self-supervised learning (SSL)
- 3. Contrastive learning
 - Recent progress
- 4. How is it performed ?
 - ReLIC Paper

Supervised Learning

- Relies on large amounts of data
- "labeled" data needed
- Generalization problems
- Adversarial Attacks

Teapot(24.99%) Joystick(37.39%)

Source: https://cs.stanford.edu/people/karpathy

ImageNet – 14 Million Labelled Images

Su, Jiawei, et al. 'One Pixel Attack for Fooling Deep Neural Networks'. IEEE Transactions on Evolutionary Computation,.

1. Limitations in supervised learning

Towards self-supervised learning

- ✓ Orders of magnitude more data
- Get labels for free
- ✓ Idea already widely used in NLP (Eg. BERT)

Progress in terms of,

- Non-contrastive methods (image in-painting, colorization, rotation prediction)
- Contrastive methods (MoCo, SimCLR, ReLIC...)

SSL in computer vision

Generally has two steps,

- Pretext/Proxy task
 - Used to learn visual representation, with the goal of using it in the real task
- Real (downstream) task.
 - Classification
 - Detection task
 - With insufficient annotated data samples.

Pretext Task/Proxy Task

- Non-Contrastive Approaches
 - Generate a pseudo-label \dot{y} from part of the input data itself
 - Only few labels could be there
- Contrastive Approaches
 - Learn a discriminative model on multiple input pairs

Contrastive Learning

 $\ell_{i,j} = -\log rac{\exp(\mathrm{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/ au)}{\sum_{k=1}^{2N} \mathbbm{1}_{[k
eq i]} \exp(\mathrm{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/ au)} \ ,$

(1)

Chen, Ting, et al. 'A Simple Framework for Contrastive Learning of Visual Representations'. ArXiv:2002.05709 [Cs, Stat], June 2020. arXiv.org, http://arxiv.org/abs/2002.05709.

2. Towards self-supervised learning -> Contrastive Learning

Pretext Task/Proxy Task

2. Towards self-supervised learning -> Contrastive Learning

Pretext Task/Proxy Task

Chen, Ting, et al. 'A Simple Framework for Contrastive Learning of Visual Representations'. *ArXiv:2002.05709 [Cs, Stat]*, June 2020. *arXiv.org*, http://arxiv.org/abs/2002.05709.

2. Towards self-supervised learning -> Contrastive Learning

Progress in self-supervised learning

SimCLR 1020 - Feb

Figure 1. ImageNet Top-1 accuracy of linear classifiers trained on representations learned with different self-supervised methods (pretrained on ImageNet). Gray cross indicates supervised ResNet-50. Our method, SimCLR, is shown in bold.

Chen, Ting, et al. 'A Simple Framework for Contrastive Learning of Visual Representations'. *ArXiv:2002.05709* [*Cs, Stat*], June 2020.

Representation learning via Invariant Causal Mechanisms (ReLIC)

Authors: Jovana Mitrovic, Brian McWilliams, Jacob Walker, Lars Buesing, Charles Blundell

Motivating Problem

How to learn useful representations, when we don't have access to labels?

Approach :

First understand what needs to be learnt, then how to learnt it

Notations

X – Unlabeled data

Assumptions on data generation

- 1. Data (X) = Style (S) + Content (C)
- 2. Content is only what matters for downstream tasks
- 3. *S* and *C* are independent

What needs to be learnt?

 \rightarrow Content

Formalize,

Performing interventions on S does not change the conditional distribution $P(Y_t|C)$

$$p^{do(S=\mathbf{s}_i)}(Y_t \mid C) = p^{do(S=\mathbf{s}_j)}(Y_t \mid C) \qquad \forall s_i, s_j \in S$$

 $p^{do(S=s)} \leftarrow$ denotes the distribution arising from assigning S the value s

Few things to think about ..

- The targets of the downstream tasks (Y_t) are unknown
- We don't have access to S

- Construct a proxy task Y^R
- Use content preserving style augmentations a_i

(rotations, grayscaling, translation, cropping)

Use content preserving style augmentations - a_i

(rotations, grayscaling, translation, cropping)

Towards ReLIC Objective,

 $p^{do(S=s_i)}(Y_t \mid C) = p^{do(S=s_j)}(Y_t \mid C) \qquad \forall s_i, s_j \in S$

Use content preserving style augmentations – a_i

(rotations, grayscaling, translation, cropping)

Towards ReLIC Objective,

$$p^{do(S=s_i)}(Y_t \mid) = p^{do(S=s_j)}(Y_t \mid) \quad \forall s_i, s_j \in S$$

Use content preserving style augmentations – a_i

(rotations, grayscaling, translation, cropping)

Towards ReLIC Objective,

 $p^{do(S=s_i)}(Y_t \mid f(x)) = p^{do(S=s_j)}(Y_t \mid f(x)) \quad \forall s_i, s_j \in S$

Use content preserving style augmentations – a_i

(rotations, grayscaling, translation, cropping)

Towards ReLIC Objective,

 $p^{do(S=s_i)}(Y^R | f(x)) = p^{do(S=s_j)}(Y^R | f(x)) \quad \forall s_i, s_j \in S$

Use content preserving style augmentations – a_i

(rotations, grayscaling, translation, cropping)

Towards ReLIC Objective,

 $p^{do(S=a_i)}(Y^R | f(x)) = p^{do(S=a_j)}(Y^R | f(x)) \quad \forall a_i, a_j \in S$

ReLIC Objective,

$$p^{do(S=a_i)}(Y^R | f(x)) = p^{do(S=a_j)}(Y^R | f(x)) \quad \forall a_i, a_j \in S$$

Enforcing the ReLIC Objective as a **regularizer**

$$p^{do(S=a_i)}(Y^R | f(x)) = p^{do(S=a_j)}(Y^R | f(x)) \quad \forall a_i, a_j \in S$$

Minimize the following objective, over $x_i \in \mathcal{D}$,

+
$$\alpha \sum_{a_{lk},a_{qt}} KL (p^{do(S=a_{lk})}, p^{do(S=a_{qt})})$$

• $a_{lk} \in \mathcal{A} \times \mathcal{A}$

- α the weighting of the invariance penalty
- *M* the number of points we use to construct the contrast set

 $p^{do(S=a_{lk})}(Y_R=j \mid f(x_i)),$

Enforcing the ReLIC Objective as a regularizer $p^{do}(S=a_i)(Y^R | f(x)) = p^{do(S=a_j)}(Y^R | f(x))$ $\forall a_i, a_i \in S$ Minimize the following objective, over $x_i \in \mathcal{D}$, $-\sum_{i=1}^{N} \sum_{a_{lk}} \log \frac{\exp\left(\frac{\tau(\tau(\tau_{l}, \tau_{l}, \tau_{l}$ + $\alpha \sum_{a_{lk},a_{qt}} KL (p^{do(S=a_{lk})}, p^{do(S=a_{qt})})$

- $a_{lk} \in \mathcal{A} \times \mathcal{A}$
- α the weighting of the invariance penalty
- *M* the number of points we use to construct the contrast set

 $p^{do(S=a_{lk})}(Y_R=j \mid f(x_i)),$

$$-\sum_{i=1}^{N} \sum_{a_{lk}} \log \frac{\exp\left(\frac{\phi\left(f(x_{i}^{a_{l}}),h(x_{i}^{a_{k}})\right)}{\tau}\right)}{\sum_{m=1}^{M} \exp\left(\frac{\phi\left(f(x_{i}^{a_{l}}),h(x_{i}^{a_{k}})\right)}{\tau}\right)} + \alpha \sum_{a_{lk},a_{qt}} KL\left(p^{do(S=a_{lk})},p^{do(S=a_{qt})}\right)$$

$$= \int_{0}^{M} \frac{e^{2\pi i r}}{r} \exp\left(\frac{\phi\left(f(x_{i}^{a_{l}}),h(x_{i}^{a_{k}})\right)}{\tau}\right)}{r} + \alpha \sum_{a_{lk},a_{qt}} KL\left(p^{do(S=a_{lk})},p^{do(S=a_{qt})}\right)$$

$$= \int_{0}^{M} \frac{e^{2\pi i r}}{r} \exp\left(\frac{\phi\left(f(x_{i}^{a_{l}}),h(x_{i}^{a_{k}})\right)}{\tau}\right)}{r} + \alpha \sum_{a_{lk},a_{qt}} KL\left(p^{do(S=a_{lk})},p^{do(S=a_{qt})}\right)$$

Linear Evaluation on Image Net

Table 1: Accuracy (in %) under linear evaluation on ImageNet for different self-supervised representation learning methods. Methods with * use SimCLR augmentations. Methods with † use custom, stronger augmentations.

Method		Top-1	Top-5
ResNet-50 architecture			
PIRL		63.6	-
CPC v2		63.8	85.3
CMC		66.2	87.0
SimCLR [4]	*	69.3	89.0
SwAV [2]	*	70.1	- 1
RELIC (ours)	*	70.3	89.5
InfoMin Aug. [22]	†	73.0	91.1
SwAV [2]	†	75.3	-
ResNet-50 with target network			
MoCo v2 [5]		71.1	
BYOL [7]	*	74.3	91.6
RELIC (ours)	*	74.8	92.2

* uses standard augmentations

† uses stronger augmentations

Robustness

ImageNet-C (corrupted) Images with diverse corruptions of varying strengths Tests: robustness of representation

Method	Supervised	SimCLR	RELIC	BYOL	ReLIC_T
mCE (%)	76.7	87.5	76.4	72.3	70.8

Out-of-distribution generalization

ImageNet-R (rendered) New renditions of 200 ImageNet classes Tests: out-of-distribution generalization

Method	Supervised	SimCLR	RELIC	BYOL	ReLIC_T
Top-1 Error (%)	63.9	81.7	77.4	77.0	76.2

Summary

- Formalize problem of self-supervised representation learning using causality and propose to more effectively leverage data augmentations through invariant prediction.
- New self-supervised objective, REpresentation Learning with Invariance Causal mechanisms (RELIC), that enforces invariant prediction through an explicit regularizer and show improved generalization guarantees.
- Generalize contrastive learning using refinements and show that learning on refinements is a sufficient condition for learning useful representations; this provides an alternative explanation to MI for the success of contrastive methods

FIGURE 1. Contrastive learning in the Generative-Discriminative and Supervised-Unsupervised spectrum. Contrastive methods belong to the group of discriminative models that predict a pseudo-label of *similarity* or *dissimilarity* given a pair of inputs.

Figure 1 illustrates the family of contrastive methods along generative-discriminative and supervised-unsupervised axes.

Useful Reading

- <u>Self-Supervised Representation Learning (lilianweng.github.io)</u>
- <u>Self-supervised learning: The dark matter of intelligence (facebook.com)</u>
- Le-Khac, Phuc H., et al. 'Contrastive Representation Learning: A Framework and Review'. *IEEE Access*, vol. 8, 2020, pp. 193907–34.

Architecture

E.2 ARCHITECTURE

We test RELIC on two different architectures – ResNet-50 (He et al., 2016) and ResNet-50 with target network as in (Grill et al., 2020). For ResNet-50, we use version 1 with post-activation. We take the representation to be the output of the final average pooling layer, which is of dimension 2048. As in SimCLR (Chen et al., 2020a), we use a critic network to project the representation to a lower dimensional space with a multi-layer perceptron (MLP). When using ResNet-50 as encoder, we treat the parameters of the MLP (e.g. depth and width) as hyperparameters and sweep over them. This MLP has batch normalization (Ioffe & Szegedy, 2015) after every layer, rectified linear activations (ReLU) (Nair & Hinton, 2010). We used a 4 layer MLP with widths [4096, 2048, 1024, 512] and output size 128 with ResNet-50. When using a ResNet-50 with target networks as in (Grill et al., 2020), we exactly follow their architecture settings.