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Abstract

We present a method to formulate algorithm discovery as program search, and apply it to discover opti-
mization algorithms for deep neural network training. We leverage e�cient search techniques to explore an
infinite and sparse program space. To bridge the large generalization gap between proxy and target tasks, we
also introduce program selection and simplification strategies. Our method discovers a simple and e�ective
optimization algorithm, Lion (EvoLved Sign Momentum). It is more memory-e�cient than Adam as it only
keeps track of the momentum. Di�erent from adaptive optimizers, its update has the same magnitude for
each parameter calculated through the sign operation. We compare Lion with widely used optimizers, such
as Adam and Adafactor, for training a variety of models on di�erent tasks. On image classification, Lion
boosts the accuracy of ViT by up to 2% on ImageNet and saves up to 5x the pre-training compute on JFT. On
vision-language contrastive learning, we achieve 88.3% zero-shot and 91.1% fine-tuning accuracy on ImageNet,
surpassing the previous best results by 2% and 0.1%, respectively. On di�usion models, Lion outperforms
Adam by achieving a better FID score and reducing the training compute by up to 2.3x. For autoregressive,
masked language modeling, and fine-tuning, Lion exhibits a similar or better performance compared to
Adam. Our analysis of Lion reveals that its performance gain grows with the training batch size. It also
requires a smaller learning rate than Adam due to the larger norm of the update produced by the sign
function. Additionally, we examine the limitations of Lion and identify scenarios where its improvements
are small or not statistically significant. The implementation of Lion is publicly available.1

1 Introduction

Optimization algorithms, i.e., optimizers, play a fundamental role in training neural networks. There are a
large number of handcrafted optimizers, mostly adaptive ones, introduced in recent years (Anil et al., 2020;
Balles and Hennig, 2018; Bernstein et al., 2018; Dozat, 2016; Liu et al., 2020; Zhuang et al., 2020). However,
Adam (Kingma and Ba, 2014) with decoupled weight decay (Loshchilov and Hutter, 2019), also referred
to as AdamW, and Adafactor with factorized second moments (Shazeer and Stern, 2018), are still the de
facto standard optimizers for training most deep neural networks, especially the recent state-of-the-art
language (Brown et al., 2020; Devlin et al., 2019; Vaswani et al., 2017), vision (Dai et al., 2021; Dosovitskiy
et al., 2021; Zhai et al., 2021) and multimodal (Radford et al., 2021; Saharia et al., 2022; Yu et al., 2022) models.

�Work done as a student researcher at Google Brain.
†Work done while at Google.
1https://github.com/google/automl/tree/master/lion.
Corresponce: xiangning@cs.ucla.edu, crazydonkey@google.com.
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Table 1: Accuracy of BASIC-L (Pham et al., 2021) on ImageNet and several robustness benchmarks. We apply
Lion to both vision tower pre-training and vision-language contrastive training stages. The previous SOTA
results on zero-shot and fine-tuning ImageNet accuracy are 86.3% and 91.0% (Yu et al., 2022).

Optimizer Zero-shot Fine-tune
ImageNet V2 A R Sketch ObjectNet ImageNet

Adafactor 85.7 80.6 85.6 95.7 76.1 82.3 90.9
Lion 88.3 81.2 86.4 96.8 77.2 82.9 91.1

Figure 1: Left: ImageNet fine-tuning accuracy vs. pre-
training cost of ViT models on JFT-300M. Right: FID of the
di�usion model on 2562 image generation. We use DDPM
for 1K steps w/o guidance to decode image. As a reference,
the FID of ADM is 10.94 (Dhariwal and Nichol, 2021).

Program 1: Discovered optimizer Lion. �1 =
0.9 and �2 = 0.99 by default are derived from
Program 4. It only tracksmomentum and uses
the sign operation to compute the update. The
two gray lines compute the standard decou-
pled weight decay, where � is the strength.
def train(weight, gradient, momentum, lr):
update = interp(gradient, momentum, �1)
update = sign(update)
momentum = interp(gradient, momentum, �2)
weight_decay = weight * �

update = update + weight_decay
update = update * lr
return update, momentum

Another direction is to automatically discover such optimization algorithms. The learning to optimize
(L2O) approach proposes to discover optimizers by training parameterized models, e.g., neural networks,
to output the updates (Andrychowicz et al., 2016; Li and Malik, 2017; Metz et al., 2019, 2022). However,
those black-box optimizers, typically trained on a limited number of small tasks, struggle to generalize to
state-of-the-art settings where much larger models are trained with significantly more training steps. Another
line of methods (Bello et al., 2017; Wang et al., 2022) apply reinforcement learning or Monte Carlo Sampling
to discover new optimizers, where the search space is defined by trees composed from predefined operands
(e.g., gradient and momentum) and operators (e.g., unary and binary math operations). However, to make
the search manageable, they often restrict the search space by using fixed operands and limiting the size of
the tree, thereby limiting the potential for discovery. Consequently, the algorithms discovered have not yet
reached the state-of-the-art. AutoML-Zero (Real et al., 2020) is an ambitious e�ort that attempts to search
every component of a machine learning pipeline while evaluating on toy tasks. This work follows the research
direction of automatic discovering optimizers and is in particular inspired by AutoML-Zero, but aims at
discovering e�ective optimization algorithms that can improve the state-of-the-art benchmarks.

In this paper, we present a method to formulate algorithm discovery as program search and apply it to
discover optimization algorithms. There are two primary challenges. The first one is to find high-quality
algorithms in the infinite and sparse program space. The second one is to further select out the algorithms
that can generalize from small proxy tasks to much larger, state-of-the-art tasks. To tackle these challenges, we
employ a range of techniques including evolutionary search with warm-start and restart, abstract execution,
funnel selection, and program simplification.

Our method discovers a simple and e�ective optimization algorithm: Lion, short for EvoLved Sign Momentum.
This algorithm di�ers from various adaptive algorithms by only tracking momentum and leveraging the sign
operation to calculate updates, leading to lower memory overhead and uniform update magnitudes across
all dimensions. Despite its simplicity, Lion demonstrates outstanding performance across a range of models
(Transformer, MLP, ResNet, U-Net, and Hybrid) and tasks (image classification, vision-language contrastive
learning, di�usion, language modeling, and fine-tuning). Notably, we achieve 88.3% zero-shot and 91.1%
fine-tuning accuracy on ImageNet by replacing Adafactor with Lion in BASIC (Pham et al., 2021), surpassing
the previous best results by 2% and 0.1%, respectively. Additionally, Lion reduces the pre-training compute
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Program 2: An example training loop,
where the optimization algorithm that we
are searching for is encoded within the
train function. The main inputs are the
weight (w), gradient (g) and learning rate
schedule (lr). The main output is the
update to theweight. v1 and v2 are two ad-
ditional variables for collecting historical
information.
w = weight_initialize()
v1 = zero_initialize()
v2 = zero_initialize()
for i in range(num_train_steps):
lr = learning_rate_schedule(i)
g = compute_gradient(w, get_batch(i))
update, v1, v2 = train(w, g, v1, v2, lr)
w = w - update

Program 3: Initial program
(AdamW). The bias correc-
tion and ✏ are omitted for
simplicity.
def train(w, g, m, v, lr):
g2 = square(g)
m = interp(g, m, 0.9)
v = interp(g2, v, 0.999)
sqrt_v = sqrt(v)
update = m / sqrt_v
wd = w * 0.01
update = update + wd
lr = lr * 0.001
update = update * lr
return update, m, v

Program 4: Discovered pro-
gram after search, selection
and removing redundancies in
the raw Program 8. Some vari-
ables are renamed for clarity.
def train(w, g, m, v, lr):
g = clip(g, lr)
g = arcsin(g)
m = interp(g, v, 0.899)
m2 = m * m
v = interp(g, m, 1.109)
abs_m = sqrt(m2)
update = m / abs_m
wd = w * 0.4602
update = update + wd
lr = lr * 0.0002
m = cosh(update)
update = update * lr
return update, m, v

on JFT by up to 5x, improves training e�ciency on di�usion models by 2.3x and achieves a better FID score,
and o�ers similar or better performance on language modeling with up to 2x compute savings.

We analyze the properties and limitations of Lion. Users should be aware that the uniform update calculated
using the sign function usually yields a larger norm compared to those generated by SGD and adaptive
methods. Therefore, Lion requires a smaller learning rate lr, and a larger decoupled weight decay � to
maintain the e�ective weight decay strength. For detailed guidance, please refer to Section 5. Additionally,
our experiments show that the gain of Lion increases with the batch size and it is more robust to di�erent
hyperparameter choices compared to AdamW. For limitations, the di�erence between Lion and AdamW is
not statistical significant on some large-scale language and image-text datasets. The advantage of Lion is
smaller if using strong augmentations or a small batch size (<64) during training. See Section 6 for details.

2 Symbolic Discovery of Algorithms

We present an approach that formulates algorithm discovery as program search (Brameier et al., 2007; Koza,
1994; Real et al., 2020). We use a symbolic representation in the form of programs for the following advantages:
(1) it aligns with the fact that algorithms must be implemented as programs for execution; (2) symbolic
representations like programs are easier to analyze, comprehend and transfer to new tasks compared to
parameterized models such as neural networks; (3) program length can be used to estimate the complexity
of di�erent programs, making it easier to select the simpler, often more generalizable ones. This work focuses
on optimizers for deep neural network training, but the method is generally applicable to other tasks.

2.1 Program Search Space

We adhere to the following three criteria while designing the program search space: (1) the search space
should be flexible enough to enable the discovery of novel algorithms; (2) the programs should be easy to
analyze and incorporate into a machine learning workflow; (3) the programs should focus on the high-level
algorithmic design rather than low-level implementation details. We define the programs to contain functions
operating over n-dimensional arrays, including structures like lists and dictionaries containing such arrays, in
an imperative language. They are similar to Python code using NumPy / JAX (Bradbury et al., 2018; Harris

3

Ramith Udara

Ramith Udara

Ramith Udara

Ramith Udara

Ramith Udara

Ramith Udara

Ramith Udara

Ramith Udara



et al., 2020) as well as pseudo code of optimization algorithms. The details of the design are outlined below,
with an example representation of AdamW in Program 3.

Input / output signature The program defines a train function, which encodes the optimization algorithm
being searched for, where the main inputs are the model weight (w), the gradient (g) and the learning rate
schedule value (lr) at the current training step. The main output is the update to the weight. The program
also incorporates extra variables initialized as zeros to collect historical information during training. For
example, AdamW requires two extra variables to estimate first and secondmoments. Note that those variables
can be used arbitrarily, we use the name m and v in Program 3 just for better readability. This simplified code
snippet in Program 2 uses the same signature as AdamW to ensure that the discovered algorithms have
smaller or equal memory footprints. As opposed to previous optimizer search attempts (Bello et al., 2017;
Wang et al., 2022), our method allows discovering better ways of updating the extra variables.

Building blocks The train function consists of a sequence of assignment statements, with no restrictions
on the number of statements or local variables. Each statement calls a function using constants or existing
variables as inputs, and the resulting value is stored in a new or existing variable. For the program, we select
45 common math functions, most of which corresponds to a function in NumPy or an operation in linear
algebra. Some functions are introduced to make the program more compact, such as the linear interpolation
function interp(x, y, a), which is made equivalent to (1 - a) * x + a * y. Preliminary experiments
have investigated the inclusion of more advanced features such as conditional and loop statements, and
defining and calling new functions, but these do not yield improved results, so we leave them out. A detailed
description of the functions are summarized in Appendix H. When necessary, the types and shapes of the
function arguments are automatically cast, e.g., in the case of adding a dictionary of arrays to a scalar.

Mutations and redundant statements The design of mutations utilized in evolutionary search is tightly
intertwined with the representation of the program. We include three types of mutations: (1) inserting a
new statement at a random location with randomly chosen functions and arguments, (2) deleting a random
chosen statement, and (3) modifying a random statement by randomly altering one of its function arguments,
which may be either variables or constants. To mutate an argument, we replace it with an existing variable
or a newly generated constant obtained by sampling from a normal distribution X ⇠ N (0 1). Additionally,
we can mutate an existing constant by multiplying it by a random factor 2a, where a ⇠ N (0 1). These
constants serve as tunable hyperparameters in the optimization algorithm, such as the peak learning rate
and weight decay in AdamW. Note that we allow a program to include redundant statements during search,
i.e., statements that do not impact the final program outputs. This is necessary as mutations are limited to
only a�ecting a single statement. Redundant statements may therefore serve as intermediate steps towards
future substantial modifications in the program.

Infinite and sparse search space Given the limitless number of statements and local variables, as well as the
presence of mutable constants, the program search space is infinite. Even if we ignore the constants and
bound the program length and number of variables, the number of potential programs is still intractably
large. A rough estimate of the number of possible programs is np = nl

fn
na⇤l
v , where nf is the number of

possible functions, nv is the number of local variables, na is the average number of arguments per statement,
and l is the program length. More importantly, the challenge comes from the sparsity of high-performing
programs in the search space. To illustrate this point, we conduct a random search that evaluates over 2M
programs on a low-cost proxy task. The best program among them is still significantly inferior to AdamW.

2.2 E�cient Search Techniques

We employ the following techniques to address the challenges posed by the infinite and sparse search space.

Evolution with warm-start and restart We apply regularized evolution as it is simple, scalable, and has
shown success on many AutoML search tasks (Holland, 1992; Real et al., 2019, 2020; So et al., 2019; Ying et al.,
2019). It keeps a population of P algorithms that are gradually improved through cycles. Each cycle picks
T<P algorithms at random and the best performer is chosen as the parent, i.e., tournament selection (Goldberg
and Deb, 1991). This parent is then copied and mutated to produce a child algorithm, which is added to
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Figure 2: Left: We run hyperparameter tuning on AdamW and random search, both with 4x more compute,
to get the best results as two baselines (green and red lines). The evolutionary search, with mean and
standard error calculated from five runs, significantly outperforms both of them. The use of multiple restarts
from the initial program is crucial due to the high variance in the search fitness (blue curves), and restarting
from the best program after 300K progress further improves the fitness (orange curves) when the original
search plateaus. Right: Example curves of search fitness, the cache hit rate, and the percentage of redundant
statements. The cache hit rate and the redundant statements percentage increase along with the search
progress to ⇠90% and ⇠70%.

the population, while the oldest algorithm is removed. Normally, evolutionary search starts with random
candidates, but we warm-start the initial population as AdamW to accelerate the search. By default, we use
a tournament size of two and a population size of 1K. To further improve the search e�ciency, we apply
two types of restart: (1) restarting from the initial program, which can lead to di�erent local optima due to
the randomness in evolution and encourage exploration. This can be done by running multiple searches in
parallel. (2) restarting from the best algorithm found thus far to further optimize it, encouraging exploitation.
Figure 2 (Left) displays the mean and standard error of five evolutionary search experiments. We run
hyperparameter tuning based on AdamW by only allowing mutations of constants in the evolution, and
run random search by sampling random programs, both with 4x more compute. Our search significantly
outperforms the best results achieved by both baselines, demonstrated as the two dashed lines in the figure.
The high variance in the search fitness necessitates running multiple repeats through restarting from the
initial program. When the search fitness plateaus after ⇠300K progress, restarting from the best program
found thus far further improves the fitness shown by the orange curve.

Pruning through abstract executionWe propose to prune the redundancies in the program space from three
sources: programs with syntax or type / shape errors, functionally equivalent programs, and redundant
statements in the programs. Before a program is actually executed, we perform an abstract execution step that
(1) infers variable types and shapes to detect programs with errors, and keeps mutating the parent program
until a valid child program is generated; (2) produces a hash that uniquely identifies how the outputs are
computed from the inputs, allowing us to cache and look up semantically duplicate programs (Gillard et al.,
2023); (3) identifies redundant statements that can be ignored during actual execution and analysis. For
instance, Program 4 is obtained after removing all redundant statements in Program 8. Abstract execution
has negligible cost compared to the actual execution, with each input and function replaced by customized
values, e.g., hash. See Appendix I for details of abstract execution. Preliminary experiments have shown
that the search process can become overwhelmed with invalid programs and cannot make progress without
filtering out invalid programs. As seen in Figure 2 (Right), the percentage of redundant statements and cache
hit rate both increase as the search proceeds. Based on five search runs, each covering 300K programs, there
are 69.8± 1.9% redundant statements towards the end, implying that redundant statements removal makes
the program ⇠3x shorter on average, thus easier to analyze. The cache hit rate is 89.1± 0.6%, indicating that
using the hash table as cache brings ⇠10x reduction on the search cost.

Proxy tasks and search cost To reduce search cost, we create low-cost proxies by decreasing the model size,
number of training examples, and steps from the target tasks. Evaluation on the proxies can be completed
on one TPU V2 chip within 20min. We use the accuracy or perplexity on the validation set as the fitness.
Each search experiment utilizes 100 TPU V2 chips and runs for ⇠72h. There are a total of 200-300K programs
generated during each search experiment. However, the number of programs that are actually evaluated is
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Figure 3: Left: The meta-validation (defined in Section 2.3) curves of two search runs measured on a ⇠500x
larger meta-validation task compared to the proxy. The blue one meta-overfits at⇠15% of the search progress,
while the orange one meta-overfits at ⇠90% and achieves a better metric. Right: Histogram of the search
progress when meta-overfitting happens based on 50 runs. Half of the runs meta-overfit early but a long tail
of runs meta-overfit much later. Blue cross depicts the best meta-validation metric averaged within each bin,
indicating that meta-overfitting happening later leads to programs that generalize better.

around 20-30K, thanks to the use of the cache through abstract execution. To incorporate restart, we start
five repeats of search experiments, followed by another round of search initializing from the best algorithm
found thus far. This results in a total cost of ⇠3K TPU V2 days. See Appendix F for the details of proxy tasks.

2.3 Generalization: Program Selection and Simplification

The search experiments can discover promising programs on proxy tasks. We use performance on meta-
validation tasks that are larger than the proxy tasks by increasing themodel size and training steps, to select the
programs that generalize beyond proxy tasks then further simplify them. The phenomenon ofmeta-overfitting
occurs when the search fitness keeps growing, but the meta-validation metric declines, indicating that the
discovered algorithms have overfit the proxy tasks. Two examples are shown in Figure 3 (Left), where the
blue curve represents early meta-overfitting and the orange curve represents later meta-overfitting.

Large generalization gap The discovered algorithms face a significant challenge due to the substantial gap
between the proxy tasks during search and the target tasks. While proxy tasks can typically be completed
within 20min on one TPU V2 chip, target tasks can be > 104x larger and require days of training on 512 TPU
V4 chips. Furthermore, we expect the optimizer to perform well on di�erent architectures, datasets and even
di�erent domains, so the discovered algorithms need to show strong out-of-distribution generalization. The
sparse search space and inherent noise in the evolution process further compound this challenge, leading to
inconsistent generalization properties between di�erent runs. Our observation suggests that evolutionary
search experiments that meta-overfit later tend to uncover optimization algorithms that generalize better.
See more details in Figure 3 (Right).

Funnel selection To mitigate the generalization gap, we collect promising programs based on search fitness
and add an extra selection step using a series of meta-validation tasks to select those generalize better. To save
compute, we apply a funnel selection process that gradually increases the scale of the meta-validation tasks.
For example, starting with proxy task A, we create a 10x larger task B by increasing the model size and the
training steps. Only algorithms that surpass the baseline on task B will be evaluated on task C, which is 100x
larger. This approach allows us to gradually filter out algorithms that show poor generalization performance,
ultimately leading to the selection of algorithms that generalize well to larger tasks.

Simplification Simpler programs are easier to understand and our intuition is that they are more likely to
generalize, so we simplify the programs with the following steps. Firstly, we remove redundant statements
that do not contribute to the final output as identified through abstract execution. Secondly, we remove
statements that are non-redundant but produce minimal di�erences when removed. This step can also be
achieved through evolution by disabling the insertion of new statements in the mutation process. Finally, we
rearrange the statements manually, assign clear and descriptive names to variables, and convert the program
into its simpler, mathematically equivalent form.
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3 Derivation and Analysis of Lion

We arrive at the optimizer Lion due to its simplicity, memory e�ciency, and strong performance in search
and meta-validation. Note that the search also discovers other existing or novel algorithms shown in
Appendix D, e.g., some with better regularization and some resembling AdaBelief (Zhuang et al., 2020) and
AdaGrad (Duchi et al., 2011).

3.1 Derivation

The search and funnel selection process lead to Program 4, which is obtained by automatically removing
redundant statements from the raw Program 8 (in the Appendix). We further simplify it to get the final
algorithm (Lion) in Program 1. Several unnecessary elements are removed from Program 4 during the
simplification process. The cosh function is removed since mwould be reassigned in the next iteration (line
3). The statements using arcsin and clip are also removed as we observe no quality drop without them.
The three red statements translate to a single sign function. Although both m and v are utilized in Program 4,
v only changes how the momentum is updated (two interp functions with constants ⇠0.9 and ⇠1.1 is
equivalent to one with ⇠0.99) and does not need to be separately tracked. Note that the bias correction is no
longer needed, as it does not change the direction. Algorithm 2 shows the pseudocode.

3.2 Analysis

Sign update and regularization The Lion algorithm produces update with uniform magnitude across all
dimensions by taking the sign operation, which is in principle di�erent from various adaptive optimizers.
Intuitively, the sign operation adds noise to the updates, which acts as a form of regularization and helps
with generalization (Chen et al., 2022; Foret et al., 2021; Neelakantan et al., 2017). An evidence is shown in
Figure 11 (Right) in the Appendix, where the ViT-B/16 trained by Lion on ImageNet has a higher training
error compared to AdamW but a 2% higher accuracy on the validation set (as shown in Table 2). Additionally,
the results in Appendix G demonstrate that Lion leads to the convergence in smoother regions, which usually
results in better generalization.

Momentum tracking The default EMA factor used to track the momentum in Lion is 0.99 (�2), compared
to the commonly used 0.9 in AdamW and momentum SGD. The current gradient and momentum are
interpolated with a factor of 0.9 (�1) before the sign operation is applied. This choice of EMA factor and
interpolation allows Lion to balance between remembering a⇠10x longer history of the gradient inmomentum
and putting more weight on the current gradient in the update. The necessity of both �1 and �2 is further
discussed in Section 4.6.

Hyperparameter andbatch size choicesLion is simpler and has fewer hyperparameters compared toAdamW
and Adafactor as it does not require ✏ and factorization-related ones. The update is an element-wise binary
±1 if we omit the weight decay term, with larger norm than those produced by other optimizers like SGD
and adaptive algorithms. As a result, Lion needs a smaller learning rate and in turn a larger decoupled weight
decay to achieve a similar e�ective weight decay strength (lr * �). Detailed information on tuning Lion can
be found in Section 5. Additionally, the advantage of Lion over AdamW enlarges as the batch size increases,
which fits the common practice of scaling up model training through data parallelism (Section 4.6).

Memory and runtime benefits Lion only saves the momentum thus has smaller memory footprint than
popular adaptive optimizers like AdamW, which is beneficial when training large models and / or using
a large batch size. As an example, AdamW needs at least 16 TPU V4 chips to train a ViT-B/16 with image
resolution 224 and batch size 4,096, while Lion only needs 8 (both with bfloat16 momentum). Another
practical benefit is that Lion has faster runtime (steps / sec) in our experiments due to its simplicity, usually
2-15% speedup compared to AdamW and Adafactor depending on the task, codebase, and hardware.

Relation to existing optimizers The sign operation has been explored in previous optimizers (Bernstein
et al., 2018; Riedmiller and Braun, 1993). The closest to ours is the handcrafted optimizer signSGD (Bernstein
et al., 2018) (and its momentum variant) that also utilizes the sign operation to calculate the update but
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Table 2: Accuracy on ImageNet, ImageNet ReaL, and ImageNet V2. Numbers in (·) are from Dai et al. (2021);
Dosovitskiy et al. (2021). Results are averaged from three runs.

Model #Params Optimizer RandAug
+ Mixup ImageNet ReaL V2

Train from scratch on ImageNet

ResNet-50 25.56M
SGD

7
76.22 82.39 63.93

AdamW 76.34 82.72 64.24
Lion 76.45 82.72 64.02

Mixer-S/16 18.53M AdamW
7

69.26 75.71 55.01
Lion 69.92 76.19 55.75

Mixer-B/16 59.88M AdamW
7

68.12 73.92 53.37
Lion 70.11 76.60 55.94

ViT-S/16 22.05M

AdamW
7

76.12 81.94 63.09
Lion 76.70 82.64 64.14

AdamW
3

78.89 84.61 66.73
Lion 79.46 85.25 67.68

ViT-B/16 86.57M

AdamW
7

75.48 80.64 61.87
Lion 77.44 82.57 64.81

AdamW
3

80.12 85.46 68.14
Lion 80.77 86.15 69.19

CoAtNet-1 42.23M AdamW
3

83.36 (83.3) - -
Lion 84.07 - -

CoAtNet-3 166.97M AdamW
3

84.45 (84.5) - -
Lion 84.87 - -

Pre-train on ImageNet-21K then fine-tune on ImageNet

ViT-B/16384 86.86M AdamW
7

84.12 (83.97) 88.61 (88.35) 73.81
Lion 84.45 88.84 74.06

ViT-L/16384 304.72M AdamW
7

85.07 (85.15) 88.78 (88.40) 75.10
Lion 85.59 89.35 75.84

has a di�erent momentum update rule from Lion. Their focus is to mitigate communication costs between
agents in distributed training, and they observe inferior performance when training ConvNets on image
classification tasks. On the other hand, NAdam (Dozat, 2016) combines the updated first moment and the
gradient to compute the update, but Lion decouples the momentum tracking and how it is applied to the
update through �2. A comparison of Lion with related optimizers can be found in Section 4.5.

4 Evaluation of Lion

In this section, we present evaluations of Lion, on various benchmarks. We mainly compare it to AdamW (or
Adafactor when memory is a bottleneck) as it is exceedingly popular and the de facto standard optimizer on a
majority of learning tasks. The result of momentum SGD is only included for ResNet since it performs worse
than AdamW elsewhere. We also benchmark other popular optimizers in Section 4.5, whose performance
and learning curves are similar to AdamW.Wemake sure that every optimizer is well-tuned for each task (see
Section 5 for tuning details). By default, the learning rate schedule is cosine decay with 10K steps warmup,
and the momentum is saved as bfloat16 to reduce the memory footprint.

4.1 Image Classification

We perform experiments including various datasets and architectures on the image classification task (see
Appendix B for dataset details). Apart from training from scratch on ImageNet, we also pre-train on two
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Table 3: Model performance when pre-trained on JFT then fine-tuned on ImageNet. Two giant ViT models
are pre-trained on JFT-3B while smaller ones are pre-trained on JFT-300M. The ViT-G/14 results are directly
from Zhai et al. (2021).

Model ViT-L/16512 ViT-H/14518 ViT-g/14518 ViT-G/14518
#Params 305.18M 633.47M 1.04B 1.88B
Optimizer AdamW Lion AdamW Lion Adafactor Lion Adafactor Lion
ImageNet 87.72 88.50 88.55 89.09 90.25 90.52 90.45 90.71 / 90.71?
ReaL 90.46 90.91 90.62 91.02 90.84 91.11 90.81 91.06 / 91.25?
V2 79.80 81.13 81.12 82.24 83.10 83.39 83.33 83.54 / 83.83?
A 52.72 58.80 60.64 63.78 - - - -
R 66.95 72.49 72.30 75.07 - - - -
? We observe overfitting in fine-tuning, therefore report both the last and oracle results.

larger well-established datasets, ImageNet-21K and JFT (Sun et al., 2017). The image size is 2242 by default
otherwise specified by the subscript.

Train from scratch on ImageNet Following previous works (Dosovitskiy et al., 2021; He et al., 2016), we
train ResNet-50 for 90 epochs with a batch size of 1,024, and other models for 300 epochs with a batch size of
4,096. As shown in Table 2, Lion significantly outperforms AdamW on various architectures. Empirically, the
improvement is more substantial on models with larger capacity, with accuracy increases of 1.96% and 0.58%
for ViT-B/16 and ViT-S/16, respectively. The performance gaps also tend to enlarger with fewer inductive
biases. When strong augmentations are applied, the gain of Lion over AdamW shrinks, but it still outperforms
AdamW by 0.42% on CoAtNet-3, despite the strong regularization during training (Dai et al., 2021).

Pre-train on ImageNet-21KWe pre-train ViT-B/16 and ViT-L/16 on ImageNet-21K for 90 epochs with a batch
size of 4,096. Table 2 shows that Lion still surpasses AdamW even when the training set is enlarged for 10x.
The gaps on larger models are consistently bigger, with +0.52% vs. +0.33% (ImageNet), +0.57% vs. +0.23%
(ReaL), and +0.74% vs. +0.25% (V2) for ViT-L/16 and ViT-B/16, respectively.

Pre-train on JFT To push the limit, we conduct extensive experiments on JFT. We follow the settings of Doso-
vitskiy et al. (2021) and Zhai et al. (2021) for both pre-training and fine-tuning. Figure 1 (Left) and 4 present
the accuracy of three ViT models (ViT-B/16, ViT-L/16, and ViT-H/14) under di�erent pre-training budgets on
JFT-300M. Lion enables the ViT-L/16 to match the performance of ViT-H/14 trained by AdamW on ImageNet
and ImageNet V2 but with 3x less pre-training cost. On ImageNet ReaL, the compute saving further becomes
5x. Another evidence is that even when a ViT-L/16 is trained by AdamW for 4M steps by Zhai et al. (2021),
its performance still lags behind the same model trained by Lion for 1M steps.

Table 3 shows the fine-tuning results, with higher resolution and Polyak averaging. Our ViT-L/16 matches
the previous ViT-H/14 results trained by AdamW, while being 2x smaller. The advantage is larger on more
challenging benchmarks, such as +1.33% (V2), +6.08% (A), +5.54% (R) for ViT-L/16. After we scale up the
pre-training dataset to JFT-3B, the ViT-g/14 trained by Lion outperforms the previous ViT-G/14 results (Zhai
et al., 2021), with 1.8x fewer parameters. Our ViT-G/14 further achieves a 90.71% accuracy on ImageNet.

4.2 Vision-Language Contrastive Learning

This section focuses on the CLIP style vision-language contrastive training (Radford et al., 2021). Instead of
learning all the parameters from scratch, we initialize the image encoder with a strong pre-trained model as
it is suggested to be more e�cient (Zhai et al., 2022).

Locked-image text Tuning (LiT)We perform a comparison between Lion and AdamW on LiT (Zhai et al.,
2022) by training the text encoder (Zhai et al., 2022) in a contrastive manner using the same frozen pre-trained
ViT. All models are trained for 1B image-text pairs with a batch size of 16,384. Table 4 shows the zero-shot
image classification results on three model scales, with the name specifies the size, e.g., LiT-B/16-B denotes
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Figure 4: ImageNet ReaL (Left) and ImageNet V2 (Right)
accuracy after we pre-train ViT models on JFT-300M then
fine-tune on ImageNet. See Table 8 (in the Appendix) for
the detailed numbers.

Table 4: Zero-shot accuracy of LiTs on ImageNet,
CIFAR-100, and Oxford-IIIT Pet. As a reference,
the zero-shot accuracy of CLIP (Radford et al.,
2021) on ImageNet is 76.2%.

Model Optimizer ImageNet C100 Pet

LiT-B/32-B AdamW 68.78 71.41 86.62
Lion 69.88 71.78 87.36

LiT-B/16-B AdamW 74.26 72.25 89.83
Lion 75.39 72.49 91.20

LiT-g/14288-L
AdamW 83.43 80.93 94.88
Lion 84.09 81.43 95.86

Figure 5: The zero-shot ImageNet accuracy curve of LiT-B/16-B (Left). FID comparison on 64⇥ 64 (Middle)
and 128⇥ 128 (Right) image generation when training di�usion models. We decode image w/o guidance.

a ViT-B/16 and a base size Transformer as the text encoder. Our method, Lion, demonstrates consistent
improvement over AdamW with gains of +1.10%, +1.13%, and +0.66% on zero-shot ImageNet accuracy
for LiT-B/32-B, LiT-B/16-B, and LiT-g/14288-L, respectively. Figure 5 (Left) depicts an example zero-shot
learning curve of LiT-B/16-B. Similar results are obtained on the other two datasets. The zero-shot image-text
retrieval results on MSCOCO (Lin et al., 2014) and Flickr30K (Plummer et al., 2015) can be found in Figure 9
(in the Appendix). The evaluation metric is Recall@K, calculated based on if the ground truth label of the
query appears in the top-K retrieved examples. Lion outperforms AdamW on both datasets, with a larger
gain in Recall@1 than Recall@10 on Flicker30K, implying more accurate retrieval results: +1.70% vs. +0.60%
for image! text and +2.14% vs. +0.20% for text! image.

BASIC Pham et al. (2021) propose to scale up batch size, dataset, and model size simultaneously, achieving
drastic improvements over CLIP. It uses a sophisticated CoAtNet (Dai et al., 2021) pre-trained on JFT-5B as
the image encoder. Furthermore, the contrastive training is performed on 6.6B image-text pairs with a larger
65,536 batch size. To push the limit, we only experiment on the largest BASIC-L, and use Lion on both image
encoder pre-training and contrastive learning stages. As illustrated in Table 1, we achieve a significant 2.6%
gain over the baseline, striking a 88.3% accuracy on zero-shot ImageNet classification. Note that this result is
2.0% higher than the previous best result (Yu et al., 2022). The performance gain is consistent on five other
robustness benchmarks. After fine-tuning the image encoder (CoAtNet-7) in BASIC-L obtained by Lion, we
further achieve a 91.1% top-1 accuracy on ImageNet, which is 0.1% better than the previous SOTA.

4.3 Di�usion Model

Recently, di�usion models achieve a huge success on image generation (Dhariwal and Nichol, 2021; Ho and
Salimans, 2022; Ho et al., 2020; Saharia et al., 2022; Song et al., 2021). Given its enormous potential, we test
the performance of Lion on unconditional image synthesis and multimodal text-to-image generation.

Image synthesis on ImageNet We utilize the improved U-Net architecture introduced in Dhariwal and
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Figure 6: Evaluation of the Imagen text-to-image 642
(Left) and the 642 ! 2562 di�usion models (Right).

Figure 7: Log perplexity on Wiki-40B (Left) and PG-
19 (Right). The speedup brought by Lion tends to
increase with the model scale. The largest model on
Wiki-40B is omitted as we observe severe overfitting.

Nichol (2021) and perform 64⇥64, 128⇥128, and 256⇥256 image generation on ImageNet. The batch size is
set as 2,048 and the learning rate remains constant throughout training. For decoding, we apply DDPM (Ho
et al., 2020) for 1K sampling steps without classifier-free guidance.The evaluation metric is the standard FID
score. Illustrated by Figure 1 (Right) and 5 (Middle and Right), Lion enables both better quality and faster
convergence on the FID score. Note that the gap between Lion and AdamW tends to increase with the image
resolution, where the generation task becomes more challenging. When generating 256⇥ 256 images, Lion
achieves the final performance of AdamW at 440K steps, reducing 2.3x iterations. The final FID scores are 4.1
(Lion) vs. 4.7 (AdamW), and for reference, the FID of ADM (Dhariwal and Nichol, 2021) is 10.94.

Text-to-image generation We follow the Imagen (Saharia et al., 2022) setup to train a base 64⇥ 64 text-to-
image model and a 64⇥ 64! 256⇥ 256 super-resolution model. All models are trained on a high-quality
internal image-text dataset with a batch size of 2,048 and a constant learning rate. Due to computational
constraints, our base U-Net has a width of 192 compared to 512 in the original 2B model, while the 600M
super-resolution model is identical to the original Imagen setup. Along with the training, 2K images are
sampled from the MSCOCO (Lin et al., 2014) validation set for real-time evaluation. We use the CLIP
score to measure image-text alignment and the zero-shot FID-30K to measure image fidelity. Classifier-free
guidance (Ho and Salimans, 2022) with a weight of 5.0 is applied as it has been shown to improve image-text
alignment. Figure 6 depicts the learning curve. While there is no clear improvement on the base 64 ⇥ 64
model, Lion outperforms AdamW on the text-conditional super-resolution model. It achieves a higher CLIP
score and has a less noisy FID metric compared to AdamW.

4.4 Language Modeling and Fine-tuning

This section focuses on language modeling and fine-tuning. On language-only tasks, we find that tuning �1

and �2 can improve the quality for both AdamW and Lion. See Section 5 for tuning details.

Autoregressive language modeling We first experiment on two smaller-scale academic datasets Wiki-
40B (Guo et al., 2020) and PG-19 (Rae et al., 2020) following Hua et al. (2022). The employed Transformer
spans three scales: small (110M), medium (336M), and large (731M). The architecture details can be found
in Appendix E. All models are trained with 218 tokens per batch for 125K steps, with a learning rate schedule
of 10K steps warmup followed by linear decay. The context length is set to 512 for Wiki-40B and 1,024 for
PG-19. Figure 7 illustrates the token-level perplexity for Wiki-40B and word-level perplexity for PG-19. Lion
consistently achieves lower validation perplexity than AdamW. It achieves 1.6x and 1.5x speedup when
training the medium size model on Wiki-40B and PG-19, respectively. When the model is increased to the
large size, the speedup on PG-19 further increases to 2x.

Scaling up the scale of language models and pre-training datasets has revolutionized the field of NLP. So
we further perform larger-scale experiments. Our pre-training dataset, similar to that used in GLaM (Du
et al., 2022), consists of 1.6 trillion tokens spanning a wide range of natural language use cases. Following
GPT-3 (Brown et al., 2020), we train three models, ranging from 1.1B to 7.5B parameters, for 300B tokens with
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Table 5: One-shot evaluation averaged over three NLG and 21 NLU tasks. The results of GPT-3 (Brown et al.,
2020) and PaLM (Chowdhery et al., 2022) are included for reference. The LLMs trained by Lion have better
in-context learning ability. See Table 11 (in the Appendix) for detailed results on all tasks.

Task 1.1B 2.1B 7.5B 6.7B
GPT-3

8B
PaLMAdafactor Lion Adafactor Lion Adafactor Lion

#Tokens 300B 300B 780B
Avg NLG 11.1 12.1 15.6 16.5 24.1 24.7 23.1 23.9
Avg NLU 53.2 53.9 56.8 57.4 61.3 61.7 58.5 59.4

Table 6: Fine-tuning performance of the T5 Base, Large, and 11B on the GLUE dev set. Results reported are
the peak validation scores per task.

Model Optimizer CoLA SST-2 MRPC STS-B QQP MNLI
-m

MNLI
-mm QNLI RTE Avg

Base AdamW 60.87 95.18 92.39 / 89.22 90.70 / 90.51 89.23 / 92.00 86.77 86.91 93.70 81.59 87.42
Lion 61.07 95.18 92.52 / 89.46 90.61 / 90.40 89.52 / 92.20 87.27 87.25 93.85 85.56 87.91

Large AdamW 63.89 96.10 93.50 / 90.93 91.69 / 91.56 90.08 / 92.57 89.69 89.92 94.45 89.17 89.46
Lion 65.12 96.22 94.06 / 91.67 91.79 / 91.60 90.23 / 92.67 89.85 89.94 94.89 90.25 89.86

11B AdamW 69.50 97.02 93.75 / 91.18 92.57 / 92.61 90.45 / 92.85 92.17 91.99 96.41 92.42 91.08
Lion 71.31 97.13 94.58 / 92.65 93.04 / 93.04 90.57 / 92.95 91.88 91.65 96.56 93.86 91.60

a batch size of 3M tokens and a context length of 1K. We evaluate them on three natural language generative
(NLG) and 21 natural language understanding (NLU) tasks (see Appendix C for task details). On this
massive dataset, we observe no perplexity di�erence throughout training. Nevertheless, Lion outperforms
Adafactor on the average in-context learning ability, as shown in Table 5. Our 7.5B baseline model, trained
for 300B tokens, outperforms the 8B PaLM, trained for 780B tokens, demonstrating the strength of our setup.
Lion outperforms Adafactor on both NLG and NLU tasks, particularly on the NLG tasks, with an exact match
improvement of +1.0, +0.9, and +0.6 for the 1.1B, 2.1B, and 7.5B models, respectively.

Masked languagemodelingWe also perform BERT training on the C4 dataset (Ra�el et al., 2020). It requires
the language models to reconstruct randomly masked out tokens in the input sequence. We use the same
architectures and training setups as the smaller-scale autoregressive experiments. Lion performs slightly
better than AdamW regarding the validation perplexity: 4.18 vs. 4.25 (small), 3.42 vs. 3.54 (medium), and
3.18 vs. 3.25 (large). See Figure 11 (Left) in the Appendix for the learning curves.

Fine-tuning We fine-tune Base (220M), Large (770M), and the largest 11B T5 (Ra�el et al., 2020) models on
the GLUE benchmark (Wang et al., 2019a). Every model is fine-tuned for 500K steps with a batch size of 128
and a constant learning rate. Table 6 shows the results on the GLUE dev set. For MRPC and QQP, we report
the F1 / Accuracy scores, for STS-B, we report the Pearson / Spearman correlation, and for the other datasets,
we report their default metric. On average, Lion beats AdamW across all three model scales. It achieves 10,
12, and 10 wins out of 12 scores for T5 Base, Large, and 11B models, respectively.

4.5 Comparison with Other Popular Optimizers

We also employ four popular optimizers RAdam (Liu et al., 2020), NAdam (Dozat, 2016), AdaBelief (Zhuang
et al., 2020) and AMSGrad (Reddi et al., 2018) to train ViT-S/16 and ViT-B/16 on ImageNet (with RandAug
and Mixup). We thoroughly tune the peak learning rate lr and decoupled weight decay � (Loshchilov and
Hutter, 2019) of every optimizer, while other hyperparameters are set as the default values in Optax2 - a
gradient processing and optimization library for JAX. As shown in Table 7, Lion is still the best performing
one. We notice that there is no clear winner amongst the baselines. AMSGrad performs the best on ViT-S/16

2https://github.com/deepmind/optax
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Table 7: The performance of various optimizers to train ViT-S/16 and ViT-B/16 on ImageNet (with RandAug
and Mixup). Lion is still the best performing one, and there is no clear winner amongst the baselines.

Model Task AdamW RAdam NAdam AdaBelief AMSGrad Ablation0.9 Ablation0.99 Lion

ViT-S/16
ImageNet 78.89 78.59 78.91 78.71 79.01 78.23 78.19 79.46

ReaL 84.61 84.47 84.62 84.56 85.01 84.28 84.17 85.25
V2 66.73 66.39 66.02 66.35 66.82 66.13 65.96 67.68

ViT-B/16
ImageNet 80.12 80.26 80.32 80.29 79.85 79.54 79.90 80.77

ReaL 85.46 85.45 85.44 85.48 85.16 85.10 85.36 86.15
V2 68.14 67.76 68.46 68.19 68.48 68.07 68.20 69.19

Figure 8: Left: Ablation for the e�ect of batch size. Lion prefers a larger batch than AdamW. ImageNet
accuracy of ViT-B/16 trained from scratch when we vary lr and � for AdamW (Middle) and Lion (Right).
Lion is more robust to di�erent hyperparameter choices.

but the worst on ViT-B/16. Figure 10 (in the Appendix) further shows that the learning curves of the five
adaptive optimizers are pretty similar, whereas Lion has a unique one that learns faster.

4.6 Ablations

Momentum tracking To ablate the e�ects of both �1 and �2, we compare to a simple update rule: m =
interp(g, m, �); update = sign(m). Two optimizers, Ablation0.9 and Ablation0.99, are created with � val-
ues of 0.9 and 0.99 respectively. Illustrated by Table 7, the two ablated optimization algorithms performworse
than all five compared baselines, let alone our Lion. Further ablation studies on the language modeling task
(as depicted in Figure 12 in the Appendix) yield similar conclusions. Those results validate the e�ectiveness
and necessity of using two linear interpolation functions, letting Lion to remember longer gradient history
meanwhile assign a higher weight to the current gradient.

E�ect of batch size Some may question whether Lion requires a large batch size to accurately determine the
direction due to the added noise from the sign operation. To address this concern, we train a ViT-B/16 model
on ImageNet using various batch sizes while maintaining the total training epoch as 300, and incorporating
RandAug and Mixup techniques. As shown in Figure 8 (Left), the optimal batch size for AdamW is 256,
while for Lion is 4,096. This indicates that Lion indeed prefers a larger batch size, but its performance remains
robust even with a small 64 batch size. Furthermore, when the batch size enlarges to 32K, leading to only 11K
training steps, Lion achieves a significant 2.5% accuracy gain over AdamW (77.9% vs. 75.4%), demonstrating
its e�ectiveness in the large batch training setting.

5 Hyperparameter Tuning

To ensure a fair comparison, we tune the peak learning rate lr and decoupled weight decay � for both AdamW
(Adafactor) and our Lion using a logarithmic scale. The default values for �1 and �2 in AdamW are set as 0.9
and 0.999, respectively, with an ✏ of 1e � 8, while in Lion, the default values for �1 and �2 are discovered
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through the program search process and set as 0.9 and 0.99, respectively. We only tune those hyperparameters
in language tasks (Section 4.4), where �1 = 0.9, �2 = 0.99 in AdamW, and �1 = 0.95, �2 = 0.98 in Lion.
Additionally, the ✏ in AdamW is set as 1e � 6 instead of the default 1e � 8 as it improves stability in our
experiments, similar to the observations in RoBERTa (Liu et al., 2019b).

The update generated by Lion is an element-wise binary ±1, as a result of the sign operation, therefore it has
a larger norm than those generated by other optimizers. Based on our experience, a suitable learning rate for
Lion is typically 3-10x smaller than that for AdamW. Since the e�ective weight decay is lr * �: update +=
w * �; update *= lr, the value of � used for Lion is 3-10x larger than that for AdamW in order to maintain
a similar strength. For instance, (1) lr = 1e� 4, � = 10.0 in Lion and lr = 1e� 3, � = 1.0 in AdamWwhen
training ViT-B/16 on ImageNet with strong augmentations; (2) lr = 3e� 5, � = 0.1 in Lion and lr = 3e� 4,
� = 0.01 in AdamW for di�usion models; (3) lr = 1e � 4, � = 0.01 in Lion and lr = 1e � 3, � = 0.001 in
Adafactor for the 7.5B language modeling. Please see Table 12 (in the Appendix) for all hyperparameters.

Apart from the peak performance, the sensitivity to hyperparameters and the di�culty in tuning them are
also critical for the adoption of an optimizer in practice. In Figure 8 (Middle and Right), we alter both lr and
� when training ViT-B/16 from scratch on ImageNet. Suggested by the heatmaps, Lion is more robust to
di�erent hyperparameter choices compared to AdamW.

6 Limitations

Limitations of search Despite the e�orts to make the search space less restrictive, it remains inspired by
the popular first-order optimization algorithms, leading to a bias towards similar algorithms. It also lacks
the functions required to construct advanced second-order algorithms (Anil et al., 2020; Gupta et al., 2018;
Martens and Grosse, 2015). The search cost is still quite large and the algorithm simplification requires
manual intervention. Further reducing the bias in the search space to discover more novel algorithms and
improving the search e�ciency are important future directions. The current program structure is quite
simplistic, as we do not find a good usage of more advanced program constructs such as conditional, loop
statements, and defining new functions. Exploring how to incorporate these elements has the potential to
unlock new possibilities.

Limitations of Lion While we endeavour to evaluate Lion on as many tasks as possible, the assessment is
limited to the chosen tasks. On vision tasks, the performance gap between Lion and AdamW narrows when
strong augmentations are utilized. There are also several tasks where Lion performs similarly to AdamW,
including: (1) the Imagen text-to-image base model, (2) the perplexity of autoregressive language model
trained on the large-scale internal dataset, which is arguably a more reliable metric the in-context learning
benchmarks, and (3) masked language modeling on C4. These tasks have a common characteristic in that the
datasets are massive and of high quality, which results in a reduced di�erence between optimizers. Another
potential limitation is the batch size. Though people often scale up the batch size to enable more parallelism,
it is likely that Lion performs no better than AdamW if the batch size is small (<64). Additional, Lion still
requires momentum tracking in bfloat16, which can be expensive for training giant models. One potential
solution is to factorize the momentum to save memory.

7 Related Work

Our work lies in the area of AutoML and meta-learning that includes learning to learn (Andrychowicz et al.,
2016; Bello et al., 2017; Metz et al., 2019, 2022; Ravi and Larochelle, 2017; Wichrowska et al., 2017; Xiong
et al., 2022), neural architecture search (Chen and Hsieh, 2020; Chen et al., 2021; Liu et al., 2019a; Pham
et al., 2018; Real et al., 2019; So et al., 2019; Wang et al., 2021; Yang et al., 2022; Zoph and Le, 2017) and
hyperparameter optimization (Dong et al., 2021; Hutter et al., 2011; Jamieson and Talwalkar, 2016; Li et al.,
2017), etc. There is also a long history of using evolutionary methods to search for programs, i.e., genetic
programming (Brameier et al., 2007; Holland, 1992; Koza, 1994). Our approach builds upon a symbolic
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search space similar to AutoML-Zero (Peng et al., 2020; Real et al., 2020). However, instead of discovering
programs with fixed dimensional matrices, vector, and scalars for toy tasks, our goal is to develop programs
that operate on n-dimensional arrays and can generalize to state-of-the-art tasks. Other related works include
numerous handcrafted optimizers (Anil et al., 2020; Bernstein et al., 2018; Dozat, 2016; Duchi et al., 2011;
Gupta et al., 2018; Kingma and Ba, 2014; Liu et al., 2020; Reddi et al., 2018; Riedmiller and Braun, 1993;
Shazeer and Stern, 2018; Zhuang et al., 2020), which we discuss in Section 3.2.

8 Conclusion

This paper proposes to discover optimization algorithms via program search. We propose techniques
to address the challenges in searching an infinite and sparse search space, and large generalization gap
between the proxy and target tasks. Our method discovers a simple and e�ective optimizer, Lion, that is
memory-e�cient and achieves strong generalization across architectures, datasets and tasks.
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Table 8: Model performance when pre-trained on JFT-300M then fine-tuned on ImageNet. Those numbers
correspond to Figure 1 (Left) and Figure 4. The fine-tuning resolution is 3842 for ViT-B/16 and ViT-L/16, and
3922 for ViT-H/14. Following Dosovitskiy et al. (2021), Polyak averaging is not applied here.

Model #Params Epochs / Steps Optimizer ImageNet ReaL V2 A R

ViT-B/16384 86.86M 7 / 517,791 AdamW 84.24 89.04 74.89 27.39 53.71
Lion 84.72 89.14 75.83 29.65 55.86

ViT-L/16384 304.72M
7 / 517,791 AdamW 86.69 89.95 78.03 40.55 64.47

Lion 87.32 90.43 79.29 47.13 68.49

14 / 1,035,583 AdamW 87.29 90.11 78.91 42.56 64.34
Lion 88.09 90.62 80.48 51.55 70.72

ViT-H/14392 632.72M 14 / 1,035,583 AdamW 88.02 90.27 80.10 53.14 69.48
Lion 88.78 90.68 81.41 58.21 73.09

A Pseudocode for AdamW and Lion

Algorithm 1 AdamW Optimizer
given �1, �2, ✏, �, ⌘, f
initialize ✓0,m0  0, v0  0, t 0
while ✓t not converged do

t t+ 1
gt  r✓f(✓t�1)
update EMA of gt and g2t
mt  �1mt�1 + (1� �1)gt
vt  �2vt�1 + (1� �2)g2t
bias correction
m̂t  mt/(1� �t

1)
v̂t  vt/(1� �t

2)
update model parameters
✓t  ✓t�1 � ⌘t(m̂t/(

p
v̂t + ✏) + �✓t�1)

end while
return ✓t

Algorithm 2 Lion Optimizer (ours)
given �1, �2, �, ⌘, f
initialize ✓0,m0  0
while ✓t not converged do

gt  r✓f(✓t�1)
update model parameters
ct  �1mt�1 + (1� �1)gt
✓t  ✓t�1 � ⌘t(sign(ct) + �✓t�1)
update EMA of gt
mt  �2mt�1 + (1� �2)gt

end while
return ✓t

B Image Classification Tasks

Our evaluation covers various benchmarks: ImageNet, ImageNet ReaL (Beyer et al., 2020), ImageNet
V2 (Recht et al., 2019), ImageNet A (Hendrycks et al., 2021b), ImageNet R (Hendrycks et al., 2021a),
ImageNet Sketch (Wang et al., 2019b), ObjectNet (Barbu et al., 2019), CIFAR-100 (Krizhevsky, 2009), and
Oxford-IIIT Pet (Parkhi et al., 2012).

C NLP Tasks

This section shows all the natural language generation (NLG) and natural language understanding (NLU)
tasks where we evaluate the large-scale language models in Section 4.4. Those tasks include Open-Domain
Question Answering, Cloze and Completion Tasks, Winograd-Style Tasks, Common Sense Reasoning, In-Context
Reading Comprehension, SuperGLUE, and Natural Language Inference.
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Figure 9: Zero-shot image-text retrieval results on MSCOCO (Top) and Flickr30K (Bottom) for LiT-B/16-B.
Recall@K is calculated based on if the ground truth label of the query appears in the top-K retrieved examples.

• NLG: TriviaQA (Joshi et al., 2017), Natural Questions (Kwiatkowski et al., 2019),WebQuestions (Berant
et al., 2013).

• NLU: HellaSwag (Zellers et al., 2019), StoryCloze (Mostafazadeh et al., 2016), Winograd (Levesque
et al., 2012), Winogrande (Sakaguchi et al., 2020), RACE (Lai et al., 2017), PIQA (Bisk et al., 2020),
ARC (Clark et al., 2018), OpenbookQA (Mihaylov et al., 2018), BoolQ (Clark et al., 2019), Copa (Gordon
et al., 2012), RTE (Dagan et al., 2006), WiC (Pilehvar and Camacho-Collados, 2019), Multirc (Khashabi
et al., 2018), WSC (Levesque et al., 2012), ReCoRD (Zhang et al., 2018), CB (de Marne�e et al., 2019),
Adversarial NLI (Nie et al., 2020).

Program 5: Algorithm with
a better regularization. It dy-
namically calculates the dot
product between the weight
and gradient, before comput-
ing the weight decay.
def train(w, g, m, v, lr):
m = interp(m, g, 0.16)
g2 = square(g)
v = interpolate(v, g2, 0.001)
v753 = dot(g, w)
sqrt_v = sqrt(v)
update = m / sqrt_v
wd = v753 * w
update = sin(update)
update = update + wd
lr = lr * 0.0216
update = update * lr
v = sin(v)
return update, m, v

Program 6: Algorithm that
tracks the second moment
without EMA decay, which
is the same as AdaGrad.
def train(w, g, m, v, lr):
m = interp(m, g, 0.1)
g2 = square(g)
g2 = v + g2
v = interp(v, g2, 0.0015)
sqrt_v = sqrt(v)
update = m / sqrt_v
v70 = get_pi()
v = min(v, v70)
update = sinh(update)
lr = lr * 0.0606
update = update * lr
return update, m, v

Program 7: Algorithm uses
the di�erence between gra-
dient and momentum to
track the second moment,
resembling AdaBelief.
def train(w, g, m, v, lr):
m = interp(m, g, 0.1)
g = g - m
g2 = square(g)
v = interp(v, g2, 0.001)
sqrt_v = sqrt(v)
update = m / sqrt_v
wd = w * 0.0238
update = update + wd
lr = lr * 0.03721
update = update * lr
return update, m, v
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Table 9: Architecture details for language modeling.

Model #Params nlayers dmodel nheads dhead

Small-scale
Small 110M 12 768 12 64
Medium 336M 24 1024 16 64
Large 731M 24 1536 16 96

Large-scale
1.1B 1.07B 24 1536 16 96
2.1B 2.14B 32 2048 16 128
7.5B 7.49B 32 4096 32 128

Table 10: Training error Ltrain and land-
scape flatness LN

train of ViT-B/16 trained
from scratch on ImageNet.

Optimizer AdamW Lion
ImageNet 75.48 77.44
ReaL 80.64 82.57
V2 61.87 64.81
Ltrain 0.61 0.75
LN
train 3.74 1.37

Figure 10: Learning curve of ViT-S/16 (Left) and ViT-B/16 (Right) associated with Table 7. The curves of
the five adaptive optimizers are similar to each other.

D Other Discovered Programs

By varying the task setting, di�erent types of algorithms can be discovered. For example, if we reduce
the amount of data in the proxy task, we are more likely to discover algorithms with better regularization
(Program 5), and if we reduce the search progress, we are likely to find simple variants of AdamW (Program 6
and 7). Future work can explore this potential to discover optimizers specialized for di�erent tasks.

E Architecture Details for Language Modeling

Table 9 shows the Transformer architecture details for language modeling (Section 4.4). The dimension of the
feed-forward layer is 4⇥ dmodel. We use vocabulary size 32K for small-scale and 256K for large-scale models.

F Details of Proxy Tasks

For vision tasks, we train a ViT with three layers, 96 hidden units and three heads, on 10% ImageNet for 30k
steps with batch size 64. The image size is 64⇥ 64 and the patch size is 16. For language tasks, we train a
Transformer with two layers, 128 hidden units and two heads on LM1B (Chelba et al., 2013) for 20K steps
with batch size 64, sequence length 32 and vocabulary size 3K. The evaluation time may vary for di�erent
programs, but typically a evaluation can be done on one TPU V2 chip within 20min. The validation accuracy
or perplexity is used as the fitness.
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Figure 11: Left: Validation perplexity when we performmasked language modeling on the C4 dataset. Right:
Training loss of ViT-B/16 on ImageNet.

G Analysis of Loss Landscape

In this section, we try to understand why our Lion optimizer achieves better generalization than AdamW
from the lens of loss geometry. The convergence to a smooth landscape has been shown to benefit the
generalization of deep neural networks (Chen and Hsieh, 2020; Chen et al., 2022; Foret et al., 2021; Keskar
et al., 2017). Following Chen et al. (2022), we measure the landscape flatness at convergence by LN

train =
E✏⇠N [Ltrain(w + ✏)] (average over 1K random noises) in Table 10. We observe that the ViT-B/16 trained by
AdamW enjoys a smaller training error Ltrain. However, Lion can enable ViT to converge to flatter regions,
as it helps the model retain comparably lower error against Gaussian perturbations.

H Available Functions

Program 8: Raw program of Lion be-
fore removing redundent statements.
def train(w, g, m, v, lr):
g = clip(g, lr)
m = clip(m, lr)
v845 = sqrt(0.6270633339881897)
v968 = sign(v)
v968 = v - v
g = arcsin(g)
m = interp(g, v, 0.8999999761581421)
v1 = m * m
v = interp(g, m, 1.109133005142212)
v845 = tanh(v845)
lr = lr * 0.0002171761734643951
update = m * lr
v1 = sqrt(v1)
update = update / v1
wd = lr * 0.4601978361606598
v1 = square(v1)
wd = wd * w
m = cosh(update)
lr = tan(1.4572199583053589)
update = update + wd
lr = cos(v845)
return update, m, v

We include 43 available functions that can be used in the program
during search. Note that the input of the functions can be one
n-dimensional array, dictionaries or lists of arrays, similar to the
pytrees in JAX.

Basic math functions from NumPy / JAX This includes unary
functions like abs, cos, sin, tan, arcsin, arccos, arctan, exp,
log, sinh, cosh, tanh, arcsinh, arccosh, arctanh, sign, exp2,
exp10, expm1, log10, log2, log1p, square, sqrt, cube, cbrt, sign,
reciprocal and binary functions like +, -, *, /, power, maximum,
minimum with the same semantic as the corresponding function in
NumPy / JAX.

Linear algebra functions commonly used in first-order opti-
mization algorithms This includes: (1) unary function norm that
computes the norm of each arrays in the input; (2) unary func-
tion global_norm that computes the global norm by treating all
the numbers in the input as one vector; (3) binary function dot
that treats the two inputs as two vectors and computes their dot
product; (4) binary function cosine_sim that treats the two inputs
as two vectors and computes their cosine similarity; (5) binary
clip_by_global_norm (clip) that clips the global norm of the
first input to the value of the second input that is required to be
a scalar; (6) ternary function interpolate (interp) that uses the
third argument a, required to be a scalar, to compute a linear inter-
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Figure 12: Log perplexity of the small (Left), medium (Middle), and large (Right) size Transformer on
PG-19. Since �1 = 0.95,�2 = 0.98 in Lion when performing language modeling, we compare to Ablation0.95
and Ablation0.98 with � = 0.95 and � = 0.98, respectively (see Section 4.6 for the definition). Lion is still the
best-performing one.

polation of the first two arguments x and ywith (1 - a) * x + a * y.

Functions producing commonly used constants This includes get_pi, get_e, get_eps that generates ⇡, e
and ✏ = 10�8 respectively.

I Abstract Execution

We propose to prune the large search space with abstract execution. Our approach is motivated by the fact
that a large number of programs are invalid, functionally equivalent, or contain redundant statements that
waste compute during evaluation. To address this, we introduce an abstract execution step that checks the
type and shape of each variable, and computes a hash for each unique computation from inputs to outputs to
detect redundant statements. The abstract execution can be seen as a static analysis of the program, achieved
by replacing functions and inputs with customized values. We outline the specifics of the customized values
and abstract execution procedure for three use cases below. The cost of the abstract execution is usually
negligible compared to the actual execution of the program.

Detecting errors with type / shape inference To detect programs containing errors, we infer the type and
shape of each variable in the program through the following steps: (1) replace each input with an abstract
object that only contains type and shape information, and replace each statement with a type and shape
inference function; (2) iterate through all statements. Instead of executing the original statement, we validate
a function call by checking the function signature and type and shape information of its arguments. If valid,
we compute the type and shape information of the output and assign it to the new variable; (3) verify the
validity of the derived type and shape of the output. This process essentially performs a static analysis of the
program, exposing errors caused by type and shape mismatch. Note that there are still run-time errors, such
as division by zero, that cannot be detected in this manner. Without such filtering of invalid programs, the
search would be overwhelmed with invalid programs, making it di�cult to achieve meaningful progress.

Deduplicating with functional hash Among the valid programs that execute without errors, there are
still lots of duplicates due to functionally equivalent programs that have di�erent surface forms but the
same underlying functionality. To address this issue, we calculate a functional hash value for every unique
computation from the inputs to the outputs as follows: (1) a unique hash value is assigned to each input
and function; (2) iterate through all statements, calculating the hash value of the outputs by combining the
hash values of the functions and arguments; (3) compute the hash value of program by combining the hash
values of all outputs. We then build a hash table that maps each unique functional hash value to the fitness
of the corresponding program. When a new program is generated, we first look up its hash value and only
perform evaluation if it is not found or if we want to evaluate it multiple times to reduce measurement noise.
In our experiments, this technique reduces the search cost by ⇠10x, as depicted in Figure 2 (Right).
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Table 11: One-shot evaluation on English NLP tasks. TriviaQA, NQs, and WebQs are NLG tasks and the rest
are NLU tasks. This corresponds to Table 5 in the main text.

Task 1.1B 2.1B 7.5B 6.7B
GPT-3

8B
PaLMAdafactor Lion Adafactor Lion Adafactor Lion

#Tokens 300B 300B 780B
TriviaQA (EM) 21.5 25.1 32.0 33.4 47.9 48.8 44.4 48.5
NQs (EM) 4.3 4.8 6.3 7.3 12.3 12.1 9.8 10.6
WebQs (EM) 7.5 6.3 8.4 8.7 12.1 13.3 15.1 12.6

HellaSwag 50.7 50.3 59.4 59.3 68.2 68.3 66.5 68.2
StoryCloze 74.8 74.4 78.2 78.3 81.2 81.5 78.7 78.7

Winograd 75.1 80.2 81.3 82.1 85.3 84.2 84.6 85.3
Winogrande 59.7 60.5 64.8 65.7 71.4 71.0 65.8 68.3

RACE-m 52.0 50.8 55.1 53.8 59.1 61.3 54.7 57.7
RACE-h 36.8 35.4 40.3 40.7 44.5 43.9 44.3 41.6

PIQA 69.4 69.9 71.3 72.1 75.5 74.5 76.3 76.1
ARC-e 64.3 62.0 69.5 68.9 72.4 72.7 62.6 71.3
ARC-c 31.2 32.9 37.3 38.0 43.3 42.6 41.5 42.3
OpenbookQA 44.8 48.0 48.4 49.0 51.4 52.4 53.0 47.4

BoolQ 54.3 56.7 64.1 62.9 73.5 73.9 68.7 64.7
Copa 75.0 78.0 83.0 84.0 85.0 87.0 82.0 82.0
RTE 55.6 52.4 49.8 59.2 63.9 62.5 54.9 57.8
WiC 47.6 47.3 46.1 48.1 50.9 48.1 50.3 47.3
Multirc (F1a) 35.9 44.3 45.0 48.8 44.7 59.2 64.5 50.6
WSC 76.5 75.4 79.6 79.3 86.7 85.6 60.6 81.4
ReCoRD 73.4 73.7 77.8 77.7 81.0 81.1 88.0 87.8
CB 46.4 44.6 48.2 44.6 51.8 46.4 33.9 41.1

ANLI R1 33.3 30.1 32.4 31.2 31.5 34.0 31.6 32.4
ANLI R2 29.8 31.8 29.8 30.6 32.4 31.9 33.9 31.4
ANLI R3 29.8 31.8 31.4 31.9 33.6 34.2 33.1 34.5
Avg NLG 11.1 12.1 15.6 16.5 24.1 24.7 23.1 23.9
Avg NLU 53.2 53.9 56.8 57.4 61.3 61.7 58.5 59.4

Identifying redundant statements by tracking dependencies In program evolution, redundant statements
are included to enable combining multiple mutations to make larger program changes. However, these
redundant statements increase the evaluation cost and make program analysis more challenging. To identify
redundant statements, we need to determine the set of statements that the outputs depend on, which can be
computed in a recursive manner using the following steps: (1) replace the value of each input with an empty
set, as they do not depend on any statement; (2) iterate through each statement. Note that each statement is
an assignment that calls a function and assigns the result to a variable, which in turn depends on the current
statement and all the depending statements of the function arguments. Therefore we replace the value of the
variable with its dependency, i.e., a set of all depending statements; (3) compute the union of all statements
that each output depends on, which contains all non-redundant statements. By filtering out redundant
statements, we obtain a simplified version of the program that is cheaper to execute and easier to analyze. In
our experiments, this reduces the program length by ⇠3x on average, as shown in Figure 2 (Right).
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Table 12: Hyperparameters for all the experiments.

Model Dropout Stoch
Depth Augmentations Optimizer �1 �2 lr �

Train from scratch on ImageNet

ResNet-50 - - - AdamW 0.9 0.999 3e� 3 0.1
Lion 0.9 0.99 3e� 4 1.0

Mixer-S/16 - 0.1 - AdamW 0.9 0.999 1e� 2 0.3
Lion 0.9 0.99 3e� 3 1.0

Mixer-B/16 - 0.1 - AdamW 0.9 0.999 1e� 2 0.3
Lion 0.9 0.99 3e� 3 3.0

ViT-S/16
0.1 0.1 - AdamW 0.9 0.999 1e� 2 0.1

Lion 0.9 0.99 1e� 3 1.0

- - RandAug: 2, 15
Mixup: 0.5

AdamW 0.9 0.999 3e� 3 0.1
Lion 0.9 0.99 3e� 4 1.0

ViT-B/16
0.1 0.1 - AdamW 0.9 0.999 3e� 3 0.3

Lion 0.9 0.99 1e� 3 1.0

- - RandAug: 2, 15
Mixup: 0.5

AdamW 0.9 0.999 1e� 3 1.0
Lion 0.9 0.99 1e� 4 10.0

CoAtNet-1 - 0.3 RandAug: 2, 15
Mixup: 0.8

AdamW 0.9 0.999 1e� 3 0.05
Lion 0.9 0.99 2e� 4 1.0

CoAtNet-3 - 0.7 RandAug: 2, 15
Mixup: 0.8

AdamW 0.9 0.999 1e� 3 0.05
Lion 0.9 0.99 2e� 4 1.0

Pre-train on ImageNet-21K

ViT-B/16 0.1 0.1 - AdamW 0.9 0.999 1e� 3 0.1
Lion 0.9 0.99 1e� 4 0.3

ViT-L/16 0.1 0.1 - AdamW 0.9 0.999 1e� 3 0.3
Lion 0.9 0.99 1e� 4 1.0

Pre-train on JFT

ViT-B/16 - - - AdamW 0.9 0.999 6e� 4 0.1
Lion 0.9 0.99 1e� 4 0.3

ViT-L/16 - - - AdamW 0.9 0.999 3e� 4 0.1
Lion 0.9 0.99 1e� 4 0.3

ViT-H/14 - - - AdamW 0.9 0.999 3e� 4 0.1
Lion 0.9 0.99 3e� 5 0.3

ViT-g/14 & ViT-G/14 - - - Adafactor 0.9 0.999 8e� 4 0.03
Lion 0.9 0.99 3e� 5 0.3

Vision-language contrastive learning

LiT-B/⇤-B - - - AdamW 0.9 0.999 1e� 3 -Lion 0.9 0.99 3e� 4

LiT-g/14-L - - - AdamW 0.9 0.999 1e� 3 0.1
Lion 0.9 0.99 2e� 4 0.5

BASIC-L - - - Adafactor 0.9 0.999 5e� 4 0.01
Lion 0.9 0.99 2e� 4 0.1

Di�usion model

Imagen base & super-resolution - - - AdamW 0.9 0.999 1e� 3 -Lion 0.9 0.99 1e� 4

Image generation on ImageNet 64⇥ 64: 0.1
128⇥ 128 & 256⇥ 256: 0.2 - - AdamW 0.9 0.999 3e� 4 0.01

Lion 0.9 0.99 3e� 5 0.1
Autoregressive & masked language modeling

Small & Medium (PG-19, C4) & Large - - - AdamW 0.9 0.99 3e� 3 -Lion 0.95 0.98 3e� 4

Medium (Wiki-40B) - - - AdamW 0.9 0.99 3e� 3 0.001
Lion 0.95 0.98 3e� 4 0.01

1.1B & 2.1B - - - Adafactor 0.9 0.99 2e� 3 0.0005
Lion 0.95 0.98 2e� 4 0.005

7.5B - - - Adafactor 0.9 0.99 1e� 3 0.001
Lion 0.95 0.98 1e� 4 0.01

Language model fine-tuning

T5-Base & Large & 11B 0.1 - - AdamW 0.9 0.99 3e� 5 -Lion 0.95 0.98 3e� 6
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